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Abstract. Collaboration networks are a ubiquitous way to characterize
the interactions between people. In this paper, we consider the problem
of inferring social relations in collaboration networks, such as the fields
that researchers collaborate in, or the categories of projects that Github
users work on together. Social relation inference can be formalized as
a multi-label classification problem on graph edges, but many popular
algorithms for semi-supervised learning on graphs only operate on the
nodes of a graph. To bridge this gap, we propose a principled method
which leverages the natural homophily present in collaboration networks.
First, observing that the fields of collaboration for two people are usually
at the intersection of their interests, we transform an edge labeling into
node labels. Second, we use a label propagation algorithm to propagate
node labels in the entire graph. Once the label distribution for all nodes
has been obtained, we can easily infer the label distribution for all edges.
Experiments on two large-scale collaboration networks demonstrate that
our method outperforms the state-of-the-art methods for social relation
inference by a large margin, in addition to running several orders of
magnitude faster.
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1 Introduction

In collaboration networks, edges, or social relations [12], are formed between peo-
ple with shared interests. Social relations in networks are complex and nuanced,
which often cannot be characterized by a single label. Consider a co-author net-
work between researchers where the social relations between two researchers are
the research areas they collaborate in. Since collaborations can occur in different
research areas, the social relation between researchers is inherently multifaceted.
Many applications on collaboration networks can benefit from an awareness of so-
cial relations, such as node classification [15], recommendation [11] and anomaly
detection [14]. However, in many networks, such label information (social rela-
tions) is far from complete. It is thus desirable to learn to infer social relations
associated with the unlabeled edges.

We formalize the task of social relation inference as a semi-supervised multi-
label edge classification problem on networks. Given the network structure and
a limited amount of labeled edges, our goal is to infer the labels of the rest of
the edges. There are several previous studies on inferring social ties from social
networks, which is similar to our definition of social relations [11, 9]. However,
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these works assume that each edge corresponds to a single relation type, which
may not be the case in collaboration networks. Moreover, they only consider
first-order or second-order relationships between nodes, but fails to model higher-
order relationships that play an important role in network inference tasks [2].

Another relevant area is network embeddings [6, 8, 4], which aim at learning
low-dimensional latent representations of nodes in a network. Also, representa-
tions of larger-scale components of networks (such as edges and subgraphs) can
be composed from these node representations. These representations can then
be used as features for a wide range of downstream tasks on networks, including
social relation inference. As a pioneering work, DeepWalk [6] generates fixed-
length random walk sequences in networks and trains a skip-gram model [5] on
these sequences to obtain node embeddings. While achieving state-of-the-art re-
sults on a handful of network inference tasks such as node classification and link
prediction [6, 4], the semantics of edges in networks are seldom exploited by net-
work embedding models. Moreover, we find that they usually ignore the unique
properties possessed by different types of networks and by different downstream
tasks. Also, many of them are computationally expensive: learning network em-
beddings of a one-million node network can take several days on a single CPU.

In this paper, we propose a simple but effective method for social relation
inference on collaboration networks. Our method is based on the observation
that social relations between people in collaboration networks are determined
by their shared interests. As such, the networks are highly homophilous and
there is a natural connection between the (hidden) labels of the nodes, and the
provided edge labels. Using this relationship, we first transform the edge labels
into a node labeling. Next, to alleviate any data sparsity problem, we perform
label propagation on the input network to obtain label distribution for all nodes.
Label propagation [16, 13] represents a class of semi-supervised learning methods
which find numerous applications in graph mining. For social relation inference,
we find that label propagation has several desirable properties compared to the
neural methods mentioned before: it is extremely efficient and it makes good use
of the high level of homophily exhibited in collaboration networks [7]. Finally,
once node labels have been obtained, the label distribution of edges can be easily
inferred from the label distribution of their endpoints. Experimental results on
real-world networks show that our method outperforms state-of-the-art methods
by a large margin.

2 Problem Definition and Notation

We hereby formalize the problem of social relation inference in collaboration
networks. Let G = (V,E) be an undirected graph, where V are the nodes in the
graph and E represent its edges. Let A be the adjacency matrix of G. Let L =
(l1, l2, · · · , lk) be the set of relation types (labels). A partially labeled network
is then defined as G = (V,EL, EU , YL), where EL is the set of labeled edges,
EU is the set of unlabeled edges with EL ∪ EU = E. YL represents the relation
types associated with the labeled edges in EL, with ∀YL(i) ∈ YL : YL(i) ⊆ L.
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Algorithm 1 LabelProp(G,P )

Input: graph G, initial node label distribution P , rounds of iteration k
Output: node label distribution after propagation ŶV ∈ R|V |×|L|
1: Compute the degree matrix D: Dii ←

∑
j Aij

2: Compute the transition matrix: Q← D−1A
3: Y (0) ← P
4: for i = 0 to k − 1 do
5: Y (i+1) ← QY (i)

6: end for
7: ŶV = Y (k)

8: return ŶV

The objective of social relation inference is to predict the relation types YU of
the unlabeled edges EU :

f : G = (V,EL, EU , YL)→ YU (1)

We denote the i-th row and ij-th element of a matrix M as Mi and Mij .

3 Method

3.1 Step 1: From Edge Labels to Node Labels

One challenge with social relation inference is that the labels we seek to predict
are associated with edges, instead of nodes. However, most machine learning
algorithms on graphs only operate on nodes. To bridge this gap, we note that
collaboration networks possess a unique property: edges are typically formed
between two people which have shared interests. Such shared interests can very
well be characterized by the labels of edges. This means that we should be able
to infer the latent interests of nodes based on their corresponding edge labels.

Formally, we seek to estimate the probability distribution matrix P ∈ R|V |×|L|
for all nodes over the label space L. For ease of presentation, we assume that the
training data is given in the form of triplets t = (u, v, l), where u, v ∈ V, l ∈ L.
In other words, if an edge has several labels, then we construct one triplet for
each label. We define the set of all training triplets as T . Assume the label dis-
tribution of u and v are independent, the strength of relation l between u and v
can be estimated as:

Pr(l|u, v) = Pul · Pvl (2)

Our objective is to maximize the probability of observing the relations in T as
given by:

` =
∏
u∈V

∏
(v,l)

(u,v,l)∈T

Pr(l|u, v) (3)
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Then, for a certain u ∈ V , our goal is to minimize the following objective:

− log `u = −
∑
(v,l)

(u,v,l)∈T

(logPul + logPvl) (4)

Since P is the probability distribution of labels, we have the constraint
∑
l∈L Pul =

1. The Lagrangian function of Eq. (4) is:

L(Pu, λ) = −
∑
(v,l)

(u,v,l)∈T

(logPul + logPvl) + λ(
∑
l∈L

Pul − 1) (5)

For all l ∈ L, we take the derivative of Eq. 5 w.r.t. Pul and set it to zero:

−#(u, l)

Pul
+ λ = 0 (6)

where #(u, l) is the number of co-occurrences of u and l in T , with v being

marginalized out. It is now clear that Pul = #(u,l)
λ . Combined with the constraint∑

l∈L Pul = 1, we have λ =
∑
l∈L #(u, l). Finally, the closed-form estimation of

Pul is calculated as: Pul = #(u, l)/
∑
l∈L #(u, l).

Concretely, we can simply compute the relative frequency that each node
co-occur with each label, which gives us the initial label distribution P of all
nodes.

3.2 Step 2: Label Propagation

Labeled edges are often scarce in real-world collaboration networks. As a result,
using the procedure outlined above, we may get an empty label distribution for
most of the nodes (as they have no edges). To alleviate this problem, we propose
using label propagation [16] on G to spread the information from labeled edges
around the graph. Algorithm 1 details the process. We start from the initial
label distribution obtained in Step 1 and repeatedly distribute node labels to
the neighboring nodes.

3.3 Step 3: From Node Labels to Edge Labels

Once we have obtained the label distribution for all nodes, we can easily compute
the label distribution for edges by reusing Eq. 2. For each edge e = (u, v), the
strength of relation l is Pul ·Pvl. The ranking of relation strengths serves as our
prediction of social relations.

3.4 Time Complexity Analysis

The majority of time complexity is contributed by Algorithm 1, which takes
O(k · (|E|+ |V | · |L|)). In our experiments, it is further shown that a small value
of k is sufficient for our model to converge: empirically, we take k = 5. We provide
detailed running time comparison against baseline methods in Section 4.
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4 Experiment

In this section, we describe the datasets for social relation inference and compare
our method against a number of baselines.

4.1 Dataset

Table 1. Statistics of the networks used in our experiments.

Dataset # Vertices # Edges # Train # Test # Valid # Classes

Arnet-Small 187,939 1,619,278 1,579,278 20,000 20,000 100
Arnet-Medium 268,037 2,747,386 2,147386 300,000 300,000 500
Arnet-Large 945,589 5,056,050 3,856,050 600,000 600,000 500

We use the processed ArnetMiner [10] datasets provided by TransNet [12].
ArnetMiner is a large-scale co-author network with over a million authors and
four million collaboration relations. The social relations between researchers can
be reflected by the research areas or topics they collaborate in. Concretely, for
each co-author relationship, the authors of TransNet extract representative re-
search interest phrases from the abstracts of co-authored papers as edge labels.
Two collaboration networks of different scales and different amount of labels
are provided in this dataset to better investigate the characteristics of different
models. The statistics of the datasets are presented in Table 1.

4.2 Baseline Methods

The baseline methods we use are as follows: (1) DeepWalk [6]: This is a network
embedding method that learns latent representations of nodes in a graph. (2)
LINE [8]: This is a network embedding method that preserves both first-order
and second-order proximities in networks. (3) node2vec [4]: This is a network
embedding method that improves DeepWalk with a biased random walk phase.
(4) TransE [1]: This is a knowledge base embedding method which simultane-
ously learns latent representations of nodes and relations. Since TransE models
each relation separately, we split each edge with k labels into k training instances,
one for each label. (5) TransNet [12]: This method is an extension to TransE
which explicitly models edges with multiple labels. It is also the state-of-the-art
method for social relation inference.

We follow the experimental setup as in TransNet [12]. For all baseline meth-
ods, we use the hyperparameter settings as described in their papers. For TransE,
we use the similarity-based method to predict social relations as described in [1].
For TransNet, we follow the inference algorithm in their paper. For the three net-
work embedding methods, we concatenate node representations as the feature
vector for edges. For social relation inference, we train a one-vs-rest logistic
regression model with L2 regularization implemented in LibLinear [3].



6 Anonymous

Table 2. Relation inference results on
Arnet-Small.

Algorithm Metrics(%)
hits@1 hits@5 hits@10

DeepWalk 13.88 36.80 50.57
LINE 11.30 31.70 44.51

node2vec 13.63 36.60 50.27
TransE 39.16 78.48 88.54

TransNet 47.67 86.54 92.27

Proposed 48.89 90.13 93.90

Table 3. Relation inference results on
Arnet-Large.

Algorithm Metrics(%)
hits@1 hits@5 hits@10

DeepWalk 5.41 16.17 23.33
LINE 4.28 13.44 19.85

node2vec 5.39 16.23 23.47
TransE 15.38 41.87 55.54

TransNet 28.85 66.15 75.55

Proposed 29.91 72.32 80.86

4.3 Results and Analysis

In Tables 2 and 3, we summarize the experimental results using the same data
split as TransNet. Results for all baseline methods (including TransNet) are
taken from the TransNet paper. We can clearly see that our simple method out-
performs all baseline methods by a large margin. The performance gain over
the best baseline method, TransNet, is at least 3.5% and up to 8.4% in terms
of hits@5. We note that the TransNet data split uses 98%, 76% and 78% edges
as training data for Arnet-Small, Arnet-Medium and Arnet-Large respectively.
With such a large amount of training data, our algorithm achieves the reported
performance even without performing label propagation, which proves the ef-
fectiveness of the node label inference algorithm. Moreover, our algorithm is
orders of magnitude faster than all baseline methods. Using a single CPU core
at 2.0GHz, our method finishes in 5 minutes on Arnet-Small while all baseline
methods take more than 24 hours.

The only hyperparameter in our algorithm is the number of rounds of itera-
tions k for label propagation, which is tuned on the validation set. We observe
that even with only 1% of labeled edges, our label propagation algorithm con-
verges within five iterations.

5 Conclusion

We study the problem of inferring social relations in collaboration networks,
formulated as a semi-supervised learning problem on graphs where edges have
multiple labels. Observing that edges in collaboration networks represent the
shared interests of two people, we transform edge labels to node labels and
perform label propagation to deal with the label sparsity problem. Experimental
results on real-world collaboration networks show the superiority of our method
in terms of both accuracy and efficiency.
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