
Pseudo-Implicit Feedback for Alleviating Data
Sparsity in Top-K Recommendation

Yun He, Haochen Chen†, Ziwei Zhu, James Caverlee
Department of Computer Science and Engineering, Texas A&M University

†Department of Computer Science, Stony Brook University
{yunhe,zhuziwei,caverlee}@tamu.edu; †haocchen@cs.stonybrook.edu

Abstract—We propose PsiRec, a novel user preference propa-
gation recommender that incorporates pseudo-implicit feedback
for enriching the original sparse implicit feedback dataset. Three
of the unique characteristics of PsiRec are: (i) it views user-
item interactions as a bipartite graph and models pseudo-
implicit feedback from this perspective; (ii) its random walks-
based approach extracts graph structure information from this
bipartite graph, toward estimating pseudo-implicit feedback;
and (iii) it adopts a Skip-gram inspired measure of confidence
in pseudo-implicit feedback that captures the pointwise mu-
tual information between users and items. This pseudo-implicit
feedback is ultimately incorporated into a new latent factor
model to estimate user preference in cases of extreme sparsity.
PsiRec results in improvements of 21.5% and 22.7% in terms of
Precision@10 and Recall@10 over state-of-the-art Collaborative
Denoising Auto-Encoders. Our implementation is available at
https://github.com/heyunh2015/PsiRecICDM2018.

Index Terms—data sparsity, random walk, recommender sys-
tems, implicit feedback, collaborative filtering

I. INTRODUCTION

We focus on the problem of top-K recommendation under
conditions of extreme sparsity in implicit feedback datasets.
The goal of top-K item recommendation is to generate a
list of K items for each user, typically by modeling the
hidden preferences of users toward items based on the set
of actual user-item interactions. While implicit feedback (like
clicks, purchases) is often more readily available than explicit
feedback, in many cases it too suffers from sparsity since users
may only interact with a small subset of all items, leading to
poor quality recommendation.

Typically, there are two main strategies to alleviate the
interaction sparsity problem. The first is to adopt a latent
factor model to map users and items into the same low-rank
dimensional space [1], [2], [3], [4], [5], [6]. The second is to
propagate user preferences using random walks to “nearby”
items so that direct user-item pairs can propagate to transitive
user-item pairs [7], [8], [9], [10], [11]. In this paper, we
propose a novel approach that combines the advantages of
both latent factor and random walk models.

Our key intuition is to carefully model pseudo-implicit feed-
back from the larger space of indirect, transitive user-item pairs
and embed this feedback in a latent factor model. Concretely,
we propose PsiRec, a novel user preference propagation
recommender that incorporates pseudo-implicit feedback for
enriching the original sparse implicit feedback dataset. This
pseudo-implicit feedback can naturally be estimated through

an embedding model which we show explicitly factorizes a
matrix where each entry is the pointwise mutual information
value of a user and item in our sample of pseudo user-item
pairs. We show how this pseudo-implicit feedback corresponds
to random walks on the user-item graph. To model confidence
in pseudo-implicit feedback, we adopt a Skip-gram [12] in-
spired measure that captures the pointwise mutual information
between users and items.

Experiments over sparse Amazon and Tmall datasets show
that our approach outperforms matrix factorization approaches
as well as more sophisticated neural network approaches and
effectively alleviates the data sparsity problem. Further, we ob-
serve that the sparser the datasets are, the larger improvement
can be obtained by capturing the pseudo-implicit feedback
from indirect transitive relationships among users and items.

II. RELATED WORK

There is a rich line of research on top-K recommendation
for implicit feedback datasets [1], [3], [4], [5], [6], where
typically positive examples are extremely sparse. One family
of approaches enriches the interactions between users and
items via exploring the transitive, indirect associations that are
not observed in the training data [7], [8], [9], [10], [11]. Huang
et al. [7] compute the association between a user and an item as
the sum of the weights of all paths connecting them. ItemRank
[8] employs PageRank on the correlation graph between items
to infer the preference of a user. P 3 [13] ranks items according
to the third power of the transition matrix.

As another line of research, latent factor (LF) models learn
to assign each user a vector of latent user factors and each item
with a vector of latent item factors. These dense latent factors
enable similarity computations between arbitrary pairs of users
and items, and thus can address the data sparsity problem. As
a representative type of LF models, matrix factorization (MF)
methods model the preference of user u over item i as the
inner product of their latent representations [1], [2]. In terms
of optimization, they aim to minimize the squared loss between
the predicted preferences and the ground-truth preferences. A
number of works can be seen as a variation of MF methods by
employing different models to learn the user-item interaction
function [3], [6] or using different loss functions [4], [14].
Our method brings together these two lines of research by
exploiting both direct and indirect associations between users
and items with a matrix factorization model.

III. PRELIMINARIES

Let U and I denote the set of users and items respectively.
Additionally, let M and N represent the number of users
and items. We also reserve u to represent a user and i to
represent an item. We define the user-item interaction matrix
as R ∈ RM×N , and denote the implicit feedback from u on i
as rui. In many cases, implicit feedback datasets only contain
the logs of binary interactions where rui = 1 indicates u
purchased i and rui = 0 the otherwise. Therefore, we focus on
binary interactions in this paper. Non-binary interactions can
be handled with slight modifications to our approach. Based
on these interactions, top-K item recommendation generates a
list of K items for each user, where each item i is ranked by
the (hidden) preference of u, denoted as pui. The preference
matrix for all users and items is denoted as P ∈ RM×N .

One traditional approach [2] for estimating this user prefer-
ence is through latent factor models like matrix factorization.
We define xu to be the latent factor vector for u and yi to
be the latent factor vector for i. Matrices X ∈ RM×K and
Y ∈ RN×K represent the latent factor matrix for users and
items accordingly. User preferences can be estimated as the
following inner product: p̂ui = xTu yi. Model parameters can
then be learned by minimizing the squared error between rui
and p̂ui: ` =

∑
u,i(rui− p̂ui)2. However, in case of extremely

sparse user-item interactions, even such latent factor models
may face great challenges: the number of direct user-item pairs
(rui = 1) may be too few to learn meaningful latent factors.

IV. PSIREC: PSEUDO-IMPLICIT FEEDBACK

In this section, we propose a general approach for enhancing
top-K recommenders with pseudo-implicit feedback. Our key
intuition is that the original sparse interaction matrix R can
be enriched by carefully modeling transitive relationships to
better estimate user preference. Concretely, our approach can
be divided into steps given as follows:
• First, we view the user-item interactions as a bipartite

graph and propose to model pseudo-implicit feedback
from this perspective.

• Second, we propose a random walks-based approach to
extract evidence of user-item closeness from this bipartite
graph toward estimating pseudo-implicit feedback.

• Third, we describe two strategies to measure the confi-
dence of pseudo-implicit feedback based on these sam-
pled user-item pairs from the bipartite graph.

• Finally, we develop a latent factor model to estimate user
preference from this pseudo-implicit feedback.

A. Pseudo-Implicit Feedback

Complementary to viewing the user-item interactions as a
matrix, we can view R as a bipartite graph G = (V,E), where
V = U ∪ I and there exists an edge eui ∈ E if and only if
rui = 1. Figure 1 presents a toy example of G, where a circle
represents a user and a rectangle represents an item.

From this perspective, we hypothesize that there are many
cases where u probably likes i even though u never purchases
i. For example, in Figure 1, u1 and u2 both purchased i2,

𝑢" 𝑢# 𝑢$

𝑖" 𝑖# 𝑖$ 𝑖& 𝑖'

Fig. 1. A toy example of the user-item bipartite graph G. A circle represents
a user and a rectangle represents an item.

which implies that u1 and u2 probably share some similarities
in their preference patterns. The fact that u1 purchased i1
indicates that u1 probably likes i1. Since u1 and u2 have
similar preferences, u2 probably likes i1 so that he might also
purchase i1. Hence, we propose to treat these indirect rela-
tionships as evidence of pseudo-implicit feedback. Intuitively,
the more distance between the user and the item in the graph,
the less confidence we have in the pseudo-implicit feedback.
Formally, we define pseudo-implicit feedback as:

Definition 1. Pseudo-Implicit Feedback. Pseudo-implicit
feedback is a non-negative real-valued implicit feedback from
u to i, denoted as sui ∈ R≥0. The larger sui is, the higher
confidence on the pseudo-implicit feedback from u to i is. If
u and i are connected through a path in G, then sui > 0. The
pseudo-implicit feedback matrix is denoted by S.

𝒓𝟏𝟏 𝒓𝟏𝟐
𝒓𝟐𝟐 𝒓𝟐𝟑 𝒓𝟐𝟒

𝒓𝟑𝟒 𝒓𝟑𝟓

𝒔𝟏𝟏 𝒔𝟏𝟐 𝒔𝟏𝟑 𝒔𝟏𝟒
𝒔𝟐𝟏 𝒔𝟐𝟐 𝒔𝟐𝟑 𝒔𝟐𝟒 𝒔𝟐𝟓

𝒔𝟑𝟐 𝒔𝟑𝟑 𝒔𝟑𝟒 𝒔𝟑𝟓

Extend

Estimate

𝒑𝟏𝟏 𝒑𝟏𝟐 𝒑𝟏𝟑 𝒑𝟏𝟒 𝒑𝟏𝟓
𝒑𝟐𝟏 𝒑𝟐𝟐 𝒑𝟐𝟑 𝒑𝟐𝟒 𝒑𝟐𝟓
𝒑𝟑𝟏 𝒑𝟑𝟐 𝒑𝟑𝟑 𝒑𝟑𝟒 𝒑𝟑𝟓

Estimate

<Better

x
𝑻

Learn

x
𝑻Learn

𝒑𝟏𝟏 𝒑𝟏𝟐 𝒑𝟏𝟑 𝒑𝟏𝟒 𝒑𝟏𝟓
𝒑𝟐𝟏 𝒑𝟐𝟐 𝒑𝟐𝟑 𝒑𝟐𝟒 𝒑𝟐𝟓
𝒑𝟑𝟏 𝒑𝟑𝟐 𝒑𝟑𝟑 𝒑𝟑𝟒 𝒑𝟑𝟓

Fig. 2. A toy example of generating pseudo-implicit feedback S from original
implicit feedback R (based on Figure 1) to better estimate user preference P
on very sparse datasets.

Figure 2 provides a toy example based on the user-item
bipartite graph in Figure 1. Clearly, S is denser than R since it
also incorporates indirect user-item pairs in G. Then, we still
follow the above-mentioned latent factor model to estimate
user preferences: p̂ui = xTu yi. The model parameters xu and
yi can be learned by minimizing ` =

∑
u,i(sui − p̂ui)

2. In
this way, we can leverage the pseudo-implicit feedback from
indirect user-item pairs to alleviate the data sparsity problem.

The key question, then, is how to generate S, the pseudo-
implicit feedback matrix? Care must be taken to capture
meaningful (pseudo) user-item pairs without also incorporating
spurious, noise-inducing user-item pairs. Hence, we propose to
generate the pseudo-implicit feedback matrix by exploiting a

𝑢" 𝑖" 𝑢" 𝑖$ 𝑢$ 𝑖%

𝑢" 𝑖$ 𝑢$ 𝑖& 𝑢% 𝑖'

𝑢" 𝑖$ 𝑢$ 𝑖$ 𝑢" 𝑖"

(a) Generated random walks.

𝑢"

𝑖$

𝑢$

𝑖$

𝑢$

𝑖%

𝑢&

𝑖%

𝑢&

𝑖'

(b) Direct pairs.

𝑢"

𝑖$

𝑢%

𝑖&

𝑢'

𝑖%

(c) Indirect
pairs.

Fig. 3. Figure 3(a) shows three random walks starting from u1 in Figure
1. Figure 3(b) and Figure 3(c) show the direct user-item pairs and indirect
user-item pairs sampled from the second random walk in Figure 3(a) when
the window size is 3.

Skip-gram inspired approach that captures user-item closeness
in the bipartite graph. Specifically, we propose to estimate S
through two steps: (1) The first step is to extract user-item
pairs from the graph G. Recall that according to Definition
1, if i is reachable by u, then sui > 0. Hence, we need to
sample these (pseudo) user-item pairs; and (2) then measure
the confidence of this feedback based on the sampled user-
item pairs. Straightforward co-occurrence counts from these
random walk samples is a first step, but may miss subtleties of
user-item pairs not occurring in the sample. Hence, we propose
a neural embedding model to overcome this challenge.

B. Random Walks to Extract User-Item Pairs

Inspired by previous works like DeepWalk [15], we propose
to use truncated random walks to sample user-item pairs
in the user-item bipartite graph. Recall that a random walk
is a stochastic process with random variables. Concretely, a
truncated random walk can be represented as a linear sequence
of vertices vi, vi+1,...,vi+γ , where vi+k is a vertex sampled
uniformly from the neighbors of vi+k−1. For each vertex
vi ∈ V = U ∪ I , we launch β walks of length γ on G,
forming the set of random walks W . We use Wvi to represent
a random walk starting from vertex vi.

Algorithm 1 Sample (u, i) from the random walks W
Input: User set U , item set I , random walks W , window

size σ
Output: The set of (u, i).

1: C = ∅
2: for each Wvi ∈ W do
3: for each Wj

vi ∈ Wvi and Wj
vi ∈ U do

4: for each k ∈ [j − σ : j + σ : 2] do
5: C = C ∪ (Wj

vi ,W
k
vi)

6: end for
7: end for
8: end for

Once the corpus of random walksW is obtained, we sample
user-item pairs from it as presented in Algorithm 1. In Lines
2-3, we iterate over all users in all random walk sequences.
For each user vertex (v ∈ U) in the sequences, any item vertex
(v ∈ I) whose distance from v is not greater than the window
size will be sampled. An example of the output of Algorithm 1
is shown in Figure 3(a), where we sample three random walks

starting from u1 in the graph presented in Figure 1. Figure 3(b)
and Figure 3(c) show the direct and indirect user-item pairs
sampled from the second random walk in Figure 3(a) when
the window size is set to 3.

C. Measuring Pseudo-Implicit Feedback

The next question is how to measure the pseudo-implicit
feedback sui from the sampled user-item pairs above. In this
subsection, we investigate two strategies for estimating sui for
each (u, i) pair: co-occurrence counts and pointwise mutual
information (PMI) [16]. Our approach using the two strategies
are denoted as PsiRec-CO and PsiRec-PMI respectively. We
first discuss the co-occurrence counts strategy. After that, to
overcome its limitation, the latter one is presented as well
as its connection to the well-known Skip-gram embedding
model. The comparison of their performance will be discussed
in Section V-D.

1) Co-occurrence counts: Let (u, i) represents a pair of u
and i. One straightforward measurement of sui is the total
number of times (u, i) appear in C:

sui = #(u, i) (1)

However, this measurement suffers from the drawback that
#(u, i) is strongly influenced by the popularity (i.e. vertex
degree) of users and items. As a consequence, for most users
high degree items will dominate their recommendations [11].
Similarly, for most items, their co-occurrence count with the
high degree users will be large. The deeper reason behind
this drawback is that it only considers the positive samples –
the user-item pairs appearing in C, but ignores the negative
samples – the user-item pairs not appearing in C.

2) Pointwise mutual information: To overcome this limita-
tion, we first build an embedding model to measure sui and
then further propose an improved version of the model which
explicitly factorizes a matrix where each entry is the pointwise
mutual information (PMI) value of u and i in C. Motivated
by the Skip-gram with negative sampling (SGNS) model [12],
we aim to maximize the probability of observing the user-item
pairs that appear in the corpus C and minimize the probability
of observing pairs that do not appear in C. We denote the
embedding vector for user u as ~u and the embedding vector
for item i as ~i. The probability that (u, i) is from C is:

P (D = 1|u, i) = σ(~u ·~i) = 1

1 + e−~u·~i

For each positive example, we then draw several random
items iN from the set of items I as negative examples. Since
the randomly drawn items are unlikely to co-occur with u, we
want to minimize the probability of observing these (u, iN)
pairs. The training objective for a single (u, i) observation is:

log σ(~u ·~i) + k · EiN∼PD
[log σ(−~u · ~iN)] (2)

where k is the number of negative samples and iN is a
random item drawn according to a distribution PD over I .
Here, following SGNS, we use PD = #(i)

|C| where #(i) is the

number of occurrences of i in C. The global training objective
can be defined over all (u, i) ∈ C:

` =
∑

(u,i)∈C

(log σ(~u ·~i) + k · EiN∼PD
[log σ(−~u · ~iN)]) (3)

which can be optimized with stochastic gradient descent.
However, the above embedding model fails to take advan-

tage of the large amount of repetitions in C. A user-item pair
may have hundreds or thousands of occurrences in the corpus,
incurring a large time cost for model training. Thus, a natural
question to ask is: can we directly operate on the co-occurrence
statistics of the user-item corpus? To answer this question,
inspired by [17], we first re-write the loss function in Eq. 3
w.r.t each unique user-item pair:

` =
∑
u∈U

∑
i∈I #(u, i)(log σ(~u ·~i)+

k ·#(u) · EiN∼PD
[log σ(−~u · ~iN)])

(4)

Additionally, we explicitly express the expectation term
EiN∼PD

[log σ(−~u · ~iN)] as follows:

EiN∼PD
[log σ(−~u · ~iN)] =

#(i)
|C| log σ(−~u ·~i) +

∑
iN∈I\{i}

#(iN)
|C| log σ(−~u · ~iN) (5)

Combining Eq. 4 and Eq. 5 leads to a local loss for a specific
user-item pair (u, i):

`(u, i) = #(u, i) log σ(~u·~i)+k ·#(u)·#(i)

|C|
log σ(−~u·~i) (6)

Let s′ui = ~u ·~i. We then take the derivative of Eq. 6 w.r.t.
s′ui and set it to zero, which eventually leads to:

s′ui =
~u ·~i = log(

#(u, i) · |C|
#(u) ·#(i)

)− log k (7)

We note that the term log(#(u,i)·|C|
#(u)·#(i)) is the pointwise mututal

information (PMI) of (u, i), which is widely used to measure
the association between random variables. This indicates that
the objective function in Eq. 3 is implicitly factorizing a user-
item association matrix, where each entry is the PMI of (u, i)
shifted by a constant log k.

However, we notice that the above formulation of s′ui has a
problem: for (u, i) pairs that never appear in C, their PMI are
ill-defined since #(u, i) = 0. Moreover, it is suggested that
(u, i) pairs with very low or even negative PMI scores are less
informative and should be discarded [18]. Thus, we propose
to compute sui by applying the following transformation:

sui = max(s′ui, 0) (8)

This formulation of sui assigns zeros to both (u, i) pairs that
do not appear in C and those with very low or negative PMI
values, thus, solving both problems above. In addition, S is a
non-negative matrix which is consistent with Definition 1.

D. Latent Factor Model to Estimate User Preference

Finally, we propose a matrix factorization approach to
estimate pui based on the learned pseudo-implicit feedback
matrix S, where the loss function is:

` =
∑
u,i

(sui − xTu yi)
2 + λ(

∑
u

||xu||2 +
∑
i

||yi||2) (9)

where λ controls the strength of regularization to prevent over-
fitting. Inspired by [1], we apply the well-known Alternating
Least Square (ALS) algorithm to optimize the loss function in
Eq. 9. Let su ∈ RN represents the pseudo-implicit feedback
over all items of u and si ∈ RM represents the pseudo-implicit
feedback of i over all users. By setting ∂`

∂xu = 0 and ∂`
∂yi

= 0,
we have:

xu = (YTY + λD)−1YT su (10)

yi = (XTX + λD)−1XT si (11)

where D represents the identity matrix. After X and Y are
learned, the whole predicted preference matrix P̂ ∈ RM×N is
reconstructed by P̂ = XTY, where p̂ui is used to rank items.

V. EXPERIMENTAL EVALUATION

A. Datasets and Evaluation Metrics

Amazon. The Amazon dataset1 contains explicit feedback,
where users give a rating from 1 to 5 on the purchased items.
Following previous work [1], [6], we transform these explicit
datasets into implicit datasets by treating all ratings as 1,
indicating that the user has purchased the item.

Tmall. The Tmall dataset2 contains anonymized shopping logs
of customers on Tmall.com. Originally, the dataset consists
of different types of user implicit feedback, such as clicks,
add-to-cart actions, and purchases. For our experiments, we
focus on the purchase action logs and transform them into the
binary interactions R since these are closely aligned with our
purchase prediction task. Further, we filter out users and items
with fewer than 20 interactions.

Table I summarizes the basic statistics of these two datasets.
Note that the densities of the two datasets are 0.072% and
0.051% respectively. We also observe that even after perform-
ing the filtering on the Tmall dataset described above that it
is still the sparser one.

For our experiments, we randomly split each dataset into
three parts: 80% for training, 10% for validation (for parameter
tuning only) and 10% for testing (for evaluation). Since many
users have very few interactions, they may not appear in the
testing set at all. In this case, there will be no match between
the top-K recommendations of any algorithm and the ground
truth since there are no further purchases made by these users.
The results reported here include these users, reflecting the
challenges of recommendation under extreme sparsity.

1http://jmcauley.ucsd.edu/data/amazon/links.html
2https://tinyurl.com/y722nrgu

TABLE I
SUMMARY STATISTICS FOR THE EVALUATION DATASETS

Dataset Users Items Interactions Density Interactions
User

Amazon Toys 19,412 11,924 167,597 0.072% 8.63
Tmall 28,291 28,401 410,714 0.051% 14.51

Metrics. Given a user, a top-K item recommendation algo-
rithm provides a ranked list of items according to the predicted
preference for each user. To assess the ranked list with respect
to the ground-truth item set of what users actually purchased,
we adopt three evaluation metrics: precision@k, recall@k, and
F1@k, where we average each metric across all users.

B. Baselines

ItemPop. This simple method recommends the most popular
items to all users, where items are ranked by the number of
times they are purchased.

BPR [4]. Bayesian personalized ranking (BPR) is a standard
pairwise ranking framework for implicit recommendation.

MF [2]. Traditional matrix factorization (MF) method uses
mean squared error as the objective function with negative
sampling from the non-observed items (rui = 0).

NCF [6]. Neural collaborative filtering (NCF) is a state-of-
the-art neural network recommender. NCF concatenates latent
factors learned from a generalized matrix factorization model
and a multi-layered perceptron model and then use a regression
layer to predict user preferences.

CDAE [3]. Collaborative Denoising Auto-Encoders (CDAE)
is another successful neural network approach for top-K rec-
ommendation. A standard Denoising Auto-Encoder takes R as
input and reconstructs it with an auto-encoder. CDAE extends
the standard Denoising Auto-Encoder by also encoding a user
latent factor.

C. Hyperparameter Settings

Our preliminary experiments show that a large number of
latent factors can be helpful for learning user preferences on
sparse datasets. Hence, for all methods, we set the number of
latent factors to 100. For all baseline methods, we carefully
choose the other hyperparameters over the validation set.

Particularly, for our approach, the regularization parameter
λ is 0.25, the number of random walks β for each node is 10.
The length γ of each random walk is 80. The window size σ
for sampling the user-item pairs is 3.

D. Comparison between the Two Strategies for Measuring S
We first compare the performance of PsiRec-CO and

PsiRec-PMI. The results in Table II, III show that PMI is
significantly superior to co-occurrence as the measure of
pseudo-implicit feedback. The higher the degree of a vertex
in the user-item bipartite graph, the higher probabilities of the
vertex co-occurring with other vertices. Hence, a high #(u, i)

might not guarantee a high confidence if #(i) or #(u) is also
very large. Therefore, it is more reasonable to let #(u, i) to be
normalized by the global frequency of u and i, which is exactly
what PMI captures. Since PsiRec-PMI brings considerable
improvements upon PsiRec-CO, we focus on PsiRec-PMI for
the rest of this paper.

E. Comparison with Baselines

Tables II, III also show the experimental results of the
baseline methods, along with the improvement of PsiRec-PMI
over the strongest baseline CDAE. Statistical significance was
tested by the t-test, where “*” denotes statistical significance
at p = 0.01 level.

On both datasets, we observe that PsiRec-PMI significantly
outperforms all baseline methods on all metrics. For instance,
PsiRec-PMI achieves the best P@10 of 0.728% and 0.978%
on the two datasets, representing 20.5% and 26.8% improve-
ment upon the strongest baseline method CDAE. Similarly,
significant improvements in terms of recall are also observed.
PsiRec-PMI achieves this by combining pseudo-implicit feed-
back with a simple matrix factorization model, which is much
more scalable and easier to tune than the state-of-the-art neural
network methods. The experimental results demonstrate that,
on sparse datasets, matrix factorization method largely benefits
from considering indirectly transitive user-item relationships,
and pseudo-implicit feedback generated by PsiRec-PMI can
better estimate the users’ actual preferences.

TABLE II
EXPERIMENTAL RESULTS ON AMAZON TOYS AND GAMES

Metric(%) P@5 R@5 F1@5 P@10 R@10 F1@10

ItemPop 0.127 0.412 0.194 0.112 0.753 0.195
BPR 0.183 0.616 0.283 0.159 1.087 0.277
MF 0.533 1.716 0.813 0.403 2.532 0.695

NCF 0.733 2.529 1.136 0.531 3.565 0.924
CDAE 0.801 2.727 1.238 0.604 4.044 1.051

PsiRec-CO 0.633 2.100 0.972 0.495 3.249 0.859
PsiRec-PMI 0.955∗ 3.224∗ 1.474∗ 0.728∗ 4.824∗ 1.265∗

Improvement(%) +19.3 +18.2 +19.1 +20.5 +19.3 +20.3

TABLE III
EXPERIMENTAL RESULTS ON TMALL

Metric(%) P@5 R@5 F1@5 P@10 R@10 F1@10

ItemPop 0.168 0.436 0.243 0.150 0.775 0.251
BPR 0.245 0.574 0.344 0.209 0.965 0.343
MF 1.010 2.466 1.433 0.646 3.124 1.071

NCF 0.747 1.914 1.074 0.537 2.730 0.897
CDAE 1.126 2.877 1.619 0.771 3.955 1.291

PsiRec-CO 1.142 2.773 1.618 0.732 3.556 1.214
PsiRec-PMI 1.444∗ 3.663∗ 2.072∗ 0.978∗ 4.952∗ 1.633∗

Improvement(%) +28.2 +27.3 +28.0 +26.8 +25.2 +26.5

F. Robustness of PsiRec-PMI on Very Sparse Datasets

We further evaluate the effectiveness of PsiRec-PMI as the
degree of data sparsity increases. Keeping the same set of
users and items, four sparser versions of the Amazon Toys

0.008

0.009

0.01

0.011

0.012

0.013

1 3 5 7 9

F1@10

Window Size

(a) Interactions Kept: 100%

0.005

0.006

0.007

0.008

0.009

1 3 5 7 9

F1@10

Window Size

(b) Interactions Kept: 80%

0.003

0.0035

0.004

0.0045

0.005

1 3 5 7 9

F1@10

Window Size

(c) Interactions Kept: 60%

0.0012

0.0014

0.0016

0.0018

1 3 5 7 9

F1@10

Window Size

(d) Interactions Kept: 40%

0.00025

0.000255

0.00026

0.000265

0.00027

1 3 5 7 9

F1@10

Window Size

(e) Interactions Kept: 20%

Fig. 4. Impact of the window size on Amazon Toys and Games dataset and its four sparser versions.

and Games dataset are generated by randomly removing 20%,
40%, 60% and 80% purchases for each user. Particularly,
Figure 5 shows that the sparser the datasets are, the larger
improvements in terms of F1@10 are achieved upon the
strongest baseline CDAE. This demonstrates the promising
ability of PsiRec to alleviate the data sparsity problem.

0
0.1
0.2
0.3
0.4
0.5
0.6

20% 40% 60% 80% 100%
Interactions Kept

Improvement

Fig. 5. Improvements (F1@10) of PsiRec upon CDAE on Amazon Toys and
Games and its four sparser versions.

G. Impact of Window Size

1) Effectiveness of Transitive User-Item Relationship: In
the user-item bipartite graph, indirectly connected user-item
pairs will be sampled by our random walks only if σ >= 3.
Figure 4 shows the performance of PsiRec-PMI as we vary
this window size on the Amazon Toys and Games dataset
and its four sparser versions. We observe that the optimal
result in terms of F1@10 is always achieved when σ >= 3,
with a considerable improvement upon σ = 1 on all datasets.
This indicates that, on sparse datasets, indirectly connected
user-item pairs can significantly enhance matrix factorization
methods for top-K recommendation.

2) Optimal Window Size on Sparse Datasets: The impact of
the window size on PsiRec-PMI on Amazon Toys dataset and
its four sparser versions is shown in Figure 4. There are two
observations: (1) The performance is sensitive to the window
size on all datasets; and (2) The sparser the dataset is, the
larger the optimal window size is. Specifically, the optimal
window size for datasets keeping percentage: 100%, 80%,
60%, 40% and 20% are 3, 5, 7, 9, 9 respectively. This suggests
that the sparser the dataset, a larger window size is needed to
sample more and longer transitive user-item relationships to
enrich S so that the user preferences can be better estimated.

VI. CONCLUSIONS AND FUTURE WORK

We propose PsiRec, a user preference propagation recom-
mender designed to alleviate the data sparsity problem in

top-K recommendation for implicit feedback datasets. Exten-
sive experiments show that the proposed matrix factorization
method significantly outperforms several state-of-the-art neu-
ral methods, and that introducing indirect relationships leads
to a large boost in top-K recommendation performance. In
the future, we aim to improve PsiRec by exploring pairwise
learners and the impact of incorporating side information like
review text and temporal signals.

REFERENCES

[1] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in ICDM, 2008.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, 2009.

[3] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising
auto-encoders for top-n recommender systems,” in WSDM, 2016.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in UAI, 2009.

[5] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang,
“One-class collaborative filtering,” in ICDM, 2008.

[6] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in WWW, 2017.

[7] Z. Huang, H. Chen, and D. Zeng, “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering,”
TOIS, 2004.

[8] M. Gori, A. Pucci, V. Roma, and I. Siena, “Itemrank: A random-walk
based scoring algorithm for recommender engines.” in IJCAI, 2007.

[9] H. Yildirim and M. S. Krishnamoorthy, “A random walk method for
alleviating the sparsity problem in collaborative filtering,” in Recsys,
2008.

[10] M. Jamali and M. Ester, “Trustwalker: a random walk model for
combining trust-based and item-based recommendation,” in KDD, 2009.

[11] F. Christoffel, B. Paudel, C. Newell, and A. Bernstein, “Blockbusters
and wallflowers: Accurate, diverse, and scalable recommendations with
random walks,” in Recsys, 2015.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013.

[13] C. Cooper, S. H. Lee, T. Radzik, and Y. Siantos, “Random walks in
recommender systems: exact computation and simulations,” in WWW,
2014.

[14] J. D. Rennie and N. Srebro, “Fast maximum margin matrix factorization
for collaborative prediction,” in ICML, 2005.

[15] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014.

[16] K. W. Church and P. Hanks, “Word association norms, mutual informa-
tion, and lexicography,” Computational linguistics, 1990.

[17] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in NIPS, 2014.

[18] J. A. Bullinaria and J. P. Levy, “Extracting semantic representations
from word co-occurrence statistics: A computational study,” Behavior

research methods, 2007.

