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Abstract. We propose a new approach for browsing through large lists

in the absence of a predefined hierarchy. DeepBrowse is defined by the

interaction of two fixed, globally-defined permutations on the space

of objects: one ordering the items by similarity, the second based on

magnitude or importance. We demonstrate this paradigm through our

WikiBrowse app for discovering interesting Wikipedia pages, which enables

the user to scan similar related entities and then increase depth once a

region of interest has been found.

Constructing good similarity orders of large collections of complex objects

is a challenging task. Graph embeddings are assignments of vertices to

points in space that reflect the structure of any underlying similarity or

relatedness network. We propose the use of graph embeddings (DeepWalk)

to provide the features to order items by similarity.

The problem of ordering items in a list by similarity is naturally modeled

by the Traveling Salesman Problem (TSP), which seeks the minimum-cost

tour visiting the complete set of items. We introduce a new variant of

TSP designed to more effectively order vertices so as to reflect longer-

range similarity. We present interesting combinatorial and algorithmic

properties of this formulation, and demonstrate that it works effectively

to organize large product universes.

1 Introduction

Browsing is a form of information retrieval, where one does not know exactly what
they want but hope to recognize it when they see it. Browsing through menus
or lists of items is a very common component of user interface design for web
and mobile applications. Menus are effective for presenting small sets of possible
selections to the user, but rapidly become unwieldy and tedious to use beyond a
dozen or so possibilities. Hierarchical systems, like faceted search or DAG-like
structures help to efficiently navigate through large sets of possibilities, but
constructing such taxonomies generally requires considerable effort and domain
expertise.

We propose a new approach to list navigation, permitting serendipitous
discovery over lists of hundreds of thousands of items without the need for a
predefined hierarchy. Our approach DeepBrowse is based on two basic concepts:
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1. We organize the universe of items in a fixed order, according to similarity.
Thus local regions in the full list will be coherent, because each item should
be similar to its neighbors.

2. To provide the diversity necessary for serendipitous discovery, we modulate
the set of items visible from our current position by significance. At the
highest level of navigation, we select from a broad array of the most popular
or important items, but once we identify an item of interest we want to
see more choices like that. Our interface enables the user to move between
smaller and larger item universes at will.

These concepts and their presentation are extremely simple, but realizing
them with minimum domain knowledge requires considerable technology under
the hood. Consider the problem of constructing effective similarity orderings. How
can we computationally measure the pairwise similarity between members of item-
universes like books, movies, and music? We propose a general approach based
on deep learning, namely the use of graph embeddings to construct similarity
orderings.

How can we construct the most effective similarity order for browsing? We
define an appropriate and novel optimization criteria for this task. Although it
is NP-complete to construct the optimal order, we provide an approximation
algorithm and heuristics which construct excellent orderings in practice. And
finally, how can we order arbitrary items (e.g. books, movies, and music) by
relative significance? We propose series of generally-available proxies to capture
this notion.

This paper is organized as follows. We first introduce the DeepBrowse interface
paradigm, and discuss its implementation through Android apps over three
distinct item universes: Wikipedia pages, movies, and dictionary words. We then
delve into the technical details of constructing similarity orderings through graph
embeddings and combinatorial optimization. Finally, we report the results of a
user study gauging the effectiveness of our interface, and review the research
literature in several topics relevant to our work.

Specifically, our work makes the following contributions:
– A Paradigm for List-Oriented Browsing. We abstract the notion of

browsing to the basic operations of scanning and deepening: scanning along a
fixed similarity order, and deepening to expose more specialized items once a
region of interest has been identified. We show that these operations permit
us to access any list item of known position in 𝑂(log 𝑛) operations, assuming
the two orderings are independent.
We note that our approach can naturally be integrated with faceted search
interfaces, by using the facet selection values as conditionals to block undesired
items from appearing in the display window.

– Implementation in Three Domains. We have created three Android
apps implementing the DeepBrowse paradigm in three distinct domains:
Wikipedia pages (WikiBrowse), movies (MovieBrowse), and vocabulary words
(WordBrowse). We have released these apps in the Android app store, and
encourage the reader to play with it to get a feel for the interface in action.
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Fig. 1: Screenshots of the WikiBrowse interface, supporting searching through all
historical figures appearing in Wikipedia. In this series, with George Washington
selected as the central item, the universe size is expanded from the top 1000
historical figures to 5000, and finally 500,000 items, as we move from left to right.
Each progressive shift successively exposes items of more specialized interest in
the similarity order, those with closer connections to the central entity.

– Deep Learning/Embedding Approach for Measuring Item Similar-

ity. The notion of graph embeddings (DeepWalk) serves as a unifying approach
to measure pairwise similarity between classes of items as diverse as people,
movies, and vocabulary words. Starting from a partial similarity network,
DeepWalk learns a high-dimensional embedding for each vertex in the graph,
generalizing its structure and reducing the problem of computing pairwise
distance to a vector difference and dot product.
We demonstrate that this approach scales to entity universes with hundreds
of thousands of items, and provides a general and convenient abstraction for
quantifying item similarity.

– Similarity Orders for Effective Browsing. The famous traveling sales-
man problem (TSP) seeks the minimum cost (maximum similarity) tour over
a set of 𝑛 items. However, the objective function in browsing is different than
in transportation problems: we seek to maximize the similarity among items
in each visible window, not just adjacent pairs.
To improve browsing orders, we develop the notion of 𝑘-robust TSP tours,
generalizing the traditional (or 1-robust) TSP problem. To the best of our
knowledge, this variant of TSP has never been previously studied in the
literature.
We give efficient and effective heuristics to construct 𝑘-robust tours, and
present experimental results that they achieve their objective of increasing
categorical coherence with the parameter 𝑘.
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– User Study. Browsing implies that the user does not have a well-defined
task in mind, complicating the question of how to evaluate the success of
their venture. Still, we perform a modest user study, demonstrating that
our similarity order improved both performance and user experience on
serendipitous discovery tasks over alphabetical order. We also demonstrate
that user performance increases rapidly with exposure to the interface.

2 Related Work

Serendipitous Browsing. Serendipity is defined as the occurrence of something
unexpected in a happy or beneficial way. André et al. [2,3] summarizes serendipity
related research along two dimensions: the activity engaged in when encountering
serendipitous information (directed browsing / non-directed browsing / none),
and what type of information was found (relevant / not relevant to the goal).
DeepBrowse falls into the category of non-directed browsing [13,25] where users
do not have a pre-defined goal while using it. [17, 21] show that organizing
images according to similarity is useful for serendipitous browsing on images.
StumbleUpon [14] allows users to stumble through the Web one (semi-random)
page at a time. Bordino et al. [8] investigates the potential of entities in pro-
moting serendipitous search from user-generated content (UGC). Clarke et al.
[10] proposes a framework that systematically rewards novelty and diversity in
information retrieval evaluation.
Graph Embeddings. Extensive literature has discussed different methods for
graph embeddings. Multidimensional scaling [11], Laplacian eigenmaps [6] and
IsoMap [24] all have good performance on small graphs, but the time complexity
of these algorithms is too high to fit for a large-scale graph. Thus, these methods
are not applicable to the network of Wikipedia people, which consists of about
500,000 vertices. Recently, methods are developed for building graph embeddings
for large-scale graph. Deepwalk [20] presents an efficient online algorithm for
learning representation of vertices in a network. By performing truncated random
walk in the graph, Deepwalk treats the walks as sentences in a language model,
and utilizes the Skip-gram model [18] on the random walks to train the vertex
embeddings.
Traveling Salesman Problem. Traveling salesman problem (TSP) is a widely
studied algorithmic problem [15]. Given a weighted graph, the TSP problem
seeks a minimum weighted Hamiltonian cycle. The Euclidean TSP is proved
to be NP-complete [19], so the main interest is in developing approximation
algorithms [22]. Heuristics like 2-opt [12], Lin-Kerninghan [16], all considerably
improve the solution quality.
Variants of the standard TSP problem have also drawn researchers attention. The
maximum-scatter TSP [4] is perhaps the most relevant work to our definition of
𝑘-robust TSP; it maximizes the minimum distance between each vertex and all of
its neighbors which are at most 𝑚 points away in the tour. Another related TSP
variant is discussed by [7], which requires constructing a tour that minimizes∑︀𝑛

𝑖=1 𝑙(𝑖). Here, 𝑙(𝑖) is the distance traveled before the 𝑖-th vertex in the TSP
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tour. These two problems both take the distance between each vertex and its
close neighbors into consideration, which is similar to our notion of 𝑘-robust
TSP. Although approximation methods provide strict theoretical bound for these
problems, their time complexities are at least quadratic in 𝑛, which is not feasible
for the large-scale graphs we consider here.

3 The DeepBrowse Paradigm

3.1 Formulation

The DeepBrowse search paradigm is defined over any universe 𝑈 of 𝑛 items by
the interaction among two permutations (similarity and significance) by two
operations on these permutations (scanning and deepening). DeepBrowse is
designed to facilitate efficient browsing through very large item universes on
small displays capable of representing only a few items simultaneously.

The similarity and significance permutations are defined as follows:

– Similarity – This permutation 𝑃1 over 𝑈 orders items by semantic similarity,
so items 𝑥 = 𝑃1(𝑖) and 𝑦 = 𝑃1(𝑖 + 𝑗) should be similar or related, for
1 ≤ 𝑖 ≤ 𝑛 − 1 and 1 ≤ 𝑗 ≤ 𝑤, where 𝑤 reflects the size of the display window.
Similarity permutations can naturally be constructed given a pairwise-
distance function 𝑑(𝑥, 𝑦), although other approaches can be built on clustering
(pairs in the same cluster have smaller distance than intra-cluster pairs), text
description similarity, customer co-purchase data, etc. In this paper, we will
generally employ a method using 𝐿2 distance on graph embeddings of the
underlying universe. We preserve a single precomputed similarity order of
items for all users.

– Significance – The permutation 𝑃2 over 𝑈 orders items by popularity, impor-
tance, or merit, so for items 𝑥 = 𝑃2(𝑖) and 𝑦 = 𝑃2(𝑖 + 1) then 𝑥 is deemed
more significant than 𝑦, for 1 ≤ 𝑖 ≤ 𝑛 − 1. Thus the most significance item is
𝑃2(1) and the least significance 𝑃2(𝑛).
The significance order of items is of great importance for efficient browsing.
Item universes often exhibit power-law behavior, where a small fraction of the
items command a large fraction of user interest and attention. The significance
permutation explicitly encodes this into the search process. Natural measures
of significance include sales, views, downloads, likes, frequency of use, critical
reviews, and ranking functions built by a combination of such variables. Net-
work centrality algorithms like PageRank provide potential ranking functions
on similarity networks even in the absence of such metadata.

We note that these permutations are very small indexing structures, each
requiring 𝑛 lg 𝑛 bits for an 𝑛-item universe. Each such permutation takes only
200KB for 𝑛 = 100, 000, and 2.5MB for 𝑛 = 1, 000, 000, although more space
may be necessary to turn this into an efficient index. These permutations are all
precomputed for the given universe 𝑈 .

The scanning and deepening operations rely on state variables 𝑚 and 𝑝, both
of which are bounded between 1 and 𝑛:
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– The significance horizon 𝑚 defines the size of the currently active universe,
namely the set of the 𝑚 items highest ranked by significance. The deepening
operation increases or decreases this value 𝑚, further enlarging or restricting
the size of this active universe.

– The position 𝑝 defines the point currently of central interest in similarity
permutation 𝑃1. The scanning operation increases or decreases 𝑝, moving us
forward or backward in this similarity permutation.

We presume that the display is capable of displaying a sequence of 𝑤 elements
at any given time. The central item displayed items is 𝑃1(𝑝). The 𝑤/2 items
above (below) it are those items from 𝑃1(𝑝) to 𝑃1(𝑝 + 𝑥) such that 𝑃1(𝑝 + 𝑖) is
displayed iff the rank of 𝑃1(𝑝 + 𝑖) in 𝑃2 ≤ 𝑚, and 𝑥 is as small as possible. The
𝑤/2 items below 𝑃1(𝑝) are defined analogously.

When 𝑚 is large relative to 𝑛, a large fraction of the items are suitable
for display, and it is efficient to simply walk past the items in 𝑃1 of insufficient
magnitude. However, for 𝑚 << 𝑛, it may require a prohibitive amount of skipping
to identify the nearest items for display. We recommend keeping two separate
data structures for 𝑃1: the first over the full universe and the second over only
the top

√
𝑛 items from 𝑃2, and toggle between them for different values for 𝑚.

3.2 Implementation

We have implemented DeepBrowse as an Android application, so far instantiated
over three separate search domains:

– WikiBrowse – Here we seek to identify interesting people to read about in
Wikipedia. Our dataset here consists of the pages of 𝑛 = 496, 614 historical
figures in Wikipedia, with a natural network defined by the links between
their Wikipedia pages.

– MovieBrowse – Here we seek to identify interesting movies to watch from the
Internet Movie Database (IMDB). Our dataset here consists of 𝑛 = 73, 232
films defining the vertex of a network, with an undirected edge (𝑣𝑖, 𝑣𝑗) when
IMDB recommends movie 𝑖 (𝑗) to viewers of movie 𝑗 (𝑖).

– WordBrowse – Here we seek to identify interesting words, worth checking the
definition of in an on-line dictionary. Our dataset here consists of 𝑛 = 100, 232
English words, each associated with its vector representation from the Polyglot
multilingual word embeddings [1].

In this section, we will introduce our basic user interface design, instantiated
as WikiBrowse for a motivating example. Figure 1 presents several screenshots,
which we use to illustrate the major components of our design: the magnitude
slider and the content scroll.

The magnitude slider, on top of our user interface, modulates the effective size
of the entity universe, here restricting focus to the top 1,004 people in significance
order. The current selection, George Washington appears in 37,891th position in
the full TSP tour over almost 500,000 historical figures, although all but the
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top 1,004 are currently hidden from view. The size of the displayed universe can
be modulated by sliding left or right.

These figures are accessible by scrolling up and down through the names,
ordered by similarity. Thus, Spanish explorers Hernando Cortez and Francisco
Pizarro appear as neighbors, as do inventors Robert Fulton and Thomas Edison,
and automotive pioneers Karl Benz and Henry Ford. The names, here centered
around George Washington, all have significance rank better than 1,004, as
reflected by the number to the right of their names and color encoded in the box
to the left of their name. Clicking on this box brings up the relevant Wikipedia
page. The color strip on right reflects the category/cluster associated with each
entity: for George Washington this is Politicians – U.S.

These screenshots also illustrate how the neighbors of a given item change
as we slide right to increase the allowable significance rank. The neighborhood
around George Washington gets progressively filled with lower-wattage figures of
closer association, such fellow patriots of the American revolution Molly Pitcher
and Betsy Ross. At its most expansive setting (right) Washington’s neighbors
are very obscure but relevant figures, e.g. William Flora, Abraham Markoe, and
William Todd all served as soldiers under Washington during the revolution.

3.3 Search Complexity Analysis

Here we analyze the complexity of accessing a specific item 𝑥 = 𝑃1(𝑖) of known
position 𝑖 using the scanning and deepening operations, provided that the simi-
larity permutation 𝑃1 and the significance permutation 𝑃2 are independent. If
𝑃1 and 𝑃2 were identical, searching for 𝑥 would require 𝑂(𝑛) time. However, the
correlation between 𝑃1 and 𝑃2 is usually very weak in practice. For WikiBrowse,
MovieBrowse and WordBrowse, the Spearman correlation coefficient are 0.04,
−0.18 and 0.19 respectively.

Under this independent assumption, it is easy to show that accessing 𝑥 only
takes 𝑂(log 𝑛) operations with high probability. Let 𝑓(𝑛) denotes the time com-
plexity of accessing 𝑥 in an n-item universe 𝑈 , and 𝑌 = {𝑃1(𝑗1), 𝑃1(𝑗2), · · · , 𝑃1(𝑗𝑤)}
denotes the initial displayed items. By scanning through 𝑌 , we can locate 𝑃1(𝑗𝑘)
and 𝑃1(𝑗𝑘+1) such that 𝑗𝑘 ≤ 𝑖 ≤ 𝑗𝑘+1. Then, we perform a deepening operation
to seek for 𝑥 between 𝑃1(𝑗𝑘) and 𝑃1(𝑗𝑘+1). Since 𝑃1 and 𝑃2 are independent,
there are approximately 𝑛

𝑤 items between 𝑃1(𝑗𝑘) and 𝑃1(𝑗𝑘+1). This gives the
following recursion:

𝑓(𝑛) = 𝑓( 𝑛

𝑤
) + 𝑂(𝑤) (1)

By applying the master theorem we have 𝑓(𝑛) = 𝑂(log 𝑛) since 𝑤 is a constant.

4 Constructing the Permutations

Here we describe a general pipeline for generating the significance and similarity
permutations for 𝑛 items, which works well for the three domains we describe:
Wikipedia pages, vocabulary words, and movies.
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4.1 Ranking Construction

The ranking permutation 𝑃2 is best constructed from domain-specific metadata
for the given entity universe. For our three initial search domains:

– WikiBrowse – To measure the significance of people in Wikipedia, we use
the historical rankings published in [23]. It uses Wikipedia as its main data
source, performing a statistical factor analysis of criteria such as PageRank,
article readership (hits), length, and editing history – although each of these
component variables defines an independent ranking. Details of this analysis,
including corrections to reflect historical aging, appear in [23].

– MovieBrowse – To measure the significance of movies, we use the number
of votes the film received in IMDB to indicate its importance. Alternate
permutations might be defined by box-office gross, critical scores, quality
ratings, or some combination of these variables.

– WordBrowse – To measure the significance of words, we sorted them accord-
ing to their frequency of appearance in the English edition of Wikipedia.
Weighting these by TF-IDF score or Google search frequency would give
other reasonable criteria.

4.2 Similarity Permutation Construction

As a general approach to measuring pairwise similarity between arbitrary pairs
of items, we start with a partial domain-similarity network of items:

– WikiBrowse – Here we start with the network where the vertices are Wikipedia
pages, and the edges are links between pages: (𝑎, 𝑏) implies that page 𝑎 refers
to page 𝑏.

– MovieBrowse – Here we start with the network where the vertices are movies
from IMDB, and the edges are recommendation links: (𝑎, 𝑏) implies that
movie 𝑏 is recommended to people who liked movie 𝑎.

– WordBrowse – Here we use the Polyglot word embeddings space directly:
(𝑎, 𝑏) implies that word 𝑎 has word 𝑏 as one of its 𝑘-nearest neighbors.

To generalize from these partial graphs, we employ the DeepWalk [20] tech-
nique to construct a high-dimensional vector representation for each item. Deep-
Walk performs random walks over this graph to generate sequences of vertices,
which can be interpreted “sentences” over the “vocabulary” of vertices. Using
this formalism, Skip-gram embeddings can be constructed to build a vector
representation for each vertex.

This high-dimensional representation allows for the fast computing of item
similarity. We used the Euclidean distance between the high-dimensional repre-
sentations of the two vertices, but the cosine distance / vector dot product could
alternately be used. Specifically, more details about the similarity measurement
between Wikipedia figures can be found in [9].
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4.3 𝑘-robust TSPs

The problem of optimizing similarity order has a natural connection to the famous
traveling salesman problem (TSP). In particular, if we define the similar order
over the vertices of a graph/network, the natural optimization goal is to minimize
the total distance between adjacent vertices in the tour, i.e. find the TSP.

However, since phone screen is capable of displaying multiple items at the
same time, it is desirable that in our interface mutually similar items appear
throughout the same screen, not merely as neighboring elements. Thus the TSP
objective function does not result in a browsing order which is optimally visually
appealing.

To address this issue, we propose (to our knowledge) the novel combinatorial
notion of a 𝑘-robust TSP tour. Given a graph 𝐺 = (𝑉, 𝐸), the 𝑘-robust cost
𝐶(𝑘, 𝑇 ) of tour 𝑇 = {𝑡1, 𝑡2, . . . 𝑡|𝑉 |, 𝑡1} is defined as:

𝐶(𝑘, 𝑡) =
|𝑉 |∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑑(𝑡𝑖, 𝑡𝑖+𝑗) (2)

This cost is the weight of the 𝑘th power of the tour in a graph theoretic sense.
Thus we take into account the cost between a vertex and all the vertices within
a window size of 𝑘.

Fig. 2: The optimal 𝑘-robust TSP tour over all the U.S. state capital cities, for
𝑘 = 1 (left), 𝑘 = 2 (center), and 𝑘 = 3 (right). The tours show greater regional
coherence and more zigzags with increasing 𝑘.

Fig. 3: All Hamiltonian cycles of the unit grid graph are minimum cost TSP tours
for the grid. However, the space-filling Hilbert curve defines a better 2-robust
tour than the conventional snake order, by a factor of ∼

√
2.

For 𝑘 = 1, this objective function is the same as a standard TSP tour, but
this is not the case for larger values of 𝑘. Figure 2 illustrates this by showing
the optimal 𝑘-robust tours of U.S. state capital cities for 1 ≤ 𝑘 ≤ 3. These tours
clearly differ. Further they show greater geographic coherence as 𝑘 increases.
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This is more easily appreciated by considering the points on a
√

𝑛 ×
√

𝑛 unit
grid graph, as shown in Figure 3. The crinkly space-filling Hilbert curve has a
bend at every possible location, as opposed the straight-edged snake tour, which
minimizes bends. The cost 𝑑(𝑡𝑖, 𝑡𝑖+2) is thus

√
2 = 1.414 for the Hilbert curve vs.

𝑑(𝑡𝑖, 𝑡𝑖+2) = 2 for the snake tour.

Approximating Optimal 𝑘-Robust Tours That the complexity of finding
the optimal 𝑘-robust tour is NP-complete follows directly from the hardness of
TSP for 𝑘 = 1. This motivates the question of finding provable approximations
to the optimal 𝑘-robust tour.

In fact, the optimal TSP tour approximates the optimal 𝑘-robust tour to
within a factor of 𝑘:

Theorem 1. The optimal TSP tour 𝑇 = (𝑡1, . . . , 𝑡𝑛) serves as a 𝛩(𝑘) approxi-
mation to the optimal 𝑘-robust tour, on metric graphs where 𝑛 is relatively prime
to 𝑘!.

Proof. First, observe that the 𝑘-robust distance function on a metric graph
satisfies the triangle inequality. This gives a trivial bound on 𝑑𝑖,𝑖+𝑘, namely

𝑑𝑖,𝑖+𝑘 ≤
𝑘∑︁

𝑗=1
𝑑(𝑡𝑖, 𝑡𝑖+𝑗). (3)

Let 𝑂𝑃𝑇 be the TSP cost of optimal tour 𝑇 . Thus 𝑂𝑃𝑇 =
∑︀𝑛

𝑖=1 𝑑(𝑖, 𝑖 + 1),
giving a simple upper bound on the 𝑘-robust cost of 𝑇 is 𝐶(𝑘, 2) × 𝑂𝑃𝑇 . This
suggests an 𝑂(𝑘2) approximation ratio.

But we can tighten this bound by observing that the edges of the form (𝑖, 𝑖+𝑗)
for all 1 ≤ 𝑖 ≤ 𝑛 form a closed tour visiting all 𝑛 points, if 𝑗 is relatively prime
to 𝑛. The cost of this tour must be ≥ 𝑂𝑃𝑇 , or else it would have defined the
optimal tour. Thus the sum of the edges in the 𝑘th power of 𝑇 must be at most
𝑘 × 𝑂𝑃𝑇 , yielding the result.

4.4 Heuristic Optimization for 𝑘-robust TSP

We use a nearest neighbor based heuristic for building the initial TSP tour. We
start from a random vertex in the graph, and repeatedly prepend the nearest
neighbor of the current TSP tour to it. Formally, if the current partial TSP tour
is 𝑇 = (𝑣1, 𝑣2, · · · , 𝑣𝑛), the nearest neighbor 𝑢 to this TSP tour is defined as:

𝑎𝑟𝑔 𝑚
𝑢

𝑖𝑛

𝑘∑︁
𝑖=1

𝑑(𝑢, 𝑣𝑖), 𝑢 ∈ 𝑉 − 𝑇 (4)

The algorithm runs in 𝑂(𝐷|𝑉 |2) (𝐷 is the dimensionality of vertex representation),
but we can speed it up to 𝑂(𝑚𝐷|𝑉 |) by sampling only 𝑚 candidate vertices
for consideration for insertion, at some cost in quality. Here, we sample the 𝑚
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nearest neighbors of each vertex as candidates by constructing a ball tree on the
graph. The algorithm for querying the 𝑚 nearest neighbors in a ball tree runs in
𝑂(𝐷|𝑉 |𝑙𝑜𝑔|𝑉 |) , thus the whole algorithm runs in 𝑂(𝑚𝐷|𝑉 | + 𝐷|𝑉 |𝑙𝑜𝑔|𝑉 |). In
the experiments below, we choose 𝑚 = 500, 𝐷 = 64.

Then, we adapt the widely used 2-opt heuristic to improve the resulting
greedy tour. The 2-opt approach repeatedly swaps a pair of vertices (𝑣𝑖, 𝑣𝑗) in
the TSP tour, thus reversing the tour between 𝑣𝑖 and 𝑣𝑗 . We accept a swap if
it reduces the 𝑘-robust cost. This process is repeated until the tour is locally
optimal. For large-scale graphs, we only perform 2-opt until the tour cost reaches
a predefined threshold.

We use two metrics to assess the 𝑘-robustness of our tours:

– Label consistency rate (LC) – Items in a real-world universe tend to occur
into natural domain-specific clusters. A good browsing order should respect
these clusters, positioning items in the same cluster close to each other in
the tour. The label consistency rate measures the ratio of neighbors of 𝑣
which share the same cluster label. Each vertex 𝑣𝑖 in 𝐺 = (𝑉, 𝐸) is assigned a
cluster label 𝑐𝑖. The label consistency rate 𝑙 of tour 𝑇 = (𝑣1, 𝑣2, · · · , 𝑣|𝑉 |, 𝑣1)
is defined as:

𝑙 =
∑︀

𝑙𝑖,𝑗
2𝑘|𝑉 |

, 1 ≤ 𝑖 ≤ |𝑉 |, 𝑖 − 𝑘 ≤ 𝑗 ≤ 𝑖 + 𝑘 (5)

where:
𝑙𝑖,𝑗 =

{︂
0, 𝑐𝑖 = 𝑐𝑗

1, 𝑐𝑖 ̸= 𝑐𝑗
(6)

– Average 𝑘-neighbor distance (D) – Here 𝑑𝑘 measures the average distance
between each vertex and all its neighbors in a window of size 𝑘, so

𝑑𝑘 = 1
|𝑉 |

|𝑉 |∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑑(𝑡𝑖, 𝑡𝑖+𝑗) (7)

4.5 𝑘-robust TSP: Experimental Results

We evaluated our 𝑘-robust TSP heuristic on each of the three datasets associated
with our WikiBrowse, MovieBrowse, and WordBrowse apps. The cluster label for
each dataset was generated by the K-means++ algorithm [5], with the number
of clusters is set to 8 for each dataset.

We employed our heuristic to built 𝑘-robust TSP tours for each 1 ≤ 𝑘 ≤ 4, and
measure the cost of each of these tours under the distance and label consistency
metrics for various 𝑘′ values from 1 to 16. The heuristic explicitly seeks to
minimize the distance, but implicitly seeks to maximize label consistency.

Our results are shown in Table 1. The dominant results for each column are
shown in bold, and highlight along the main diagonal for both evaluation metrics.
In particular, tours optimized for 𝑘-robustness tend to perform best for the 𝑘 they
were optimized for, which confirms the soundness of our optimization heuristic.
Further, designs for 𝑘 = 4 outperform tours optimized for smaller 𝑘 when tested
for higher levels of robustness, namely 𝑘′ = 8 and 𝑘′ = 16.
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WikiBrowse D@1 D@2 D@3 D@4 D@8 D@16 LC@1 LC@2 LC@3 LC@4 LC@8 LC@16

1-Robust Tour 1.62 1.73 1.81 1.87 2.04 2.25 93.0 91.9 91.0 90.2 87.8 84.2

2-Robust Tour 1.67 1.71 1.77 1.82 1.96 2.13 92.7 92.3 91.7 91.1 89.3 86.6

3-Robust Tour 1.69 1.73 1.76 1.81 1.93 2.09 92.5 92.1 91.8 91.3 89.9 87.6

4-Robust Tour 1.71 1.75 1.78 1.80 1.91 2.05 92.4 92.0 91.7 91.4 90.2 88.2

Table 1: Experimental result for 𝑘-robust TSP tour optimization for the Wikipedia
dataset. D@k denotes the average k-neighbor distance for the given tour, while
LC@k denotes the k-neighbor label consistency rate. Tours designed to optimize
robustness for a given 1 ≤ 𝑘 ≤ 4 dominate the performance for the criteria they
were designed for under both measures of quality. Smaller values of 𝐷@𝑘 and
larger values of 𝐿𝐶@𝑘 indicate better performance.

5 User Study

Evaluating a user interface for serendipitous browsing is complicated by the
nature (or lack) of the task. Success is achieved when the user finds something
interesting to them, not a particular item proposed by the investigator.

To provide a baseline for comparison and assess the value of the similarity
order, we constructed two versions of the WikiBrowse app for both user studies.
The standard version uses our 4-robust TSP tour to provide conceptual orders.
The alternate version uses alphabetical order instead. we asked our subjects to
browse on the app for 5 minutes, and mark all the items they find interesting
enough to read its Wikipedia page. Since by default the app displays the 100
most significant people who are already well-known to most subjects, we asked
the participants to mark only those people who are not within the top 100. 16
different subjects (9 males and 7 females) were recruited to participate in this
study. All the subjects were students at a local university, all of whom have
normal or corrected-to-normal eye vision. Each participant was given a brief
questionnaire about their experience at the conclusion of their task. To rule out
order effects, half of the participants tried the similarity order version first, while
the other half used the alphabetical order version first.

For the serendipity discovery task, the average number of interesting people
found within five minutes of browsing is 17.7 (𝑆𝐷 = 7.95) in the similarity order
app, versus 11.6 in the alphabetical order app (𝑆𝐷 = 6.20), which means the
similarity order app yields a much higher chance of encountering interesting
people. Also, subjects who used the alphabetical order app first made significantly
more serendipitous discoveries when they switched to the similarity order app
(from 11.5 to 20.6 in the mean). In contrast, subjects who used the similarity
order app first showed degraded performance with alphabetical order (from 14.75
to 11.75 in the mean). Thus, the similarity order app proves superior to the
alphabetical order app in encouraging serendipitous discoveries.

Table 2 reports the results of our user satisfaction survey, graded on a 7-point
Likert scale. Subjects clearly noticed that the neighboring items were more similar
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Question Alpha Sim

I notice the similarities between the type of people appearing near each other. 1.8 (0.66) 5.9 (1.17)

The interface is good for discovering interesting Wikipedia people. 4.1 (1.27) 5.4 (1.00)

The interface is good for finding a specific person in Wikipedia. 4.9 (1.39) 4.0 (1.06)

It was easy to learn how to use this interface. 5.9 (1.03) 6.1 (0.70)

Table 2: Average scores for the user interface satisfaction questionnaire, using a
7-point Likert scale, with 1=strongly disagree, 7=strongly agree. Alpha denotes
the average score and standard deviation for the alphabetical order app, while
Sim stands for that of the similarity order app.

with the 𝑘-robust tour than alphabetical order. By contrast, the alphabetical
order was deemed better for locating specific figures, exactly the expected result
since there is no way to locate specific items by name in the similarity order
short of exhaustive search, versus binary search for alphabetical order. Questions
addressing user satisfaction generally yielded approval. Subjects generally felt
the interface as easy to use and good for discovering interesting people.

6 Conclusion

We have proposed a new design for browsing-oriented user interfaces. Implement-
ing a domain-specific DeepBrowse interface can be reduced to the problem of
constructing two permutations, one measuring the similarity between items, and
the other the relative significance of each item over the universe. We show how to
construct these permutations in a systematic way using graph embeddings and
combinatorial optimization. Finally, we report a user study which demonstrates
that our interface meets its basic design objectives.
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